Authors: Wu C, Li A, Leng Y, Kang J
PMID: 22054065 DOI: 10.1089/dna.2011.1401
Abstract
Recent studies suggest that change of macrophage phenotype (M1/M2) is associated with autoimmune diseases. Sodium valproate (VPA) is a class I histone deacetylase (HDAC) inhibitor, which has immunomodulatory function in graft-versus-host disease. However, its impact on macrophage polarization has not been defined. We evaluated the effects of VPA on both mouse macrophage cell line RAW264.7 and primary mouse bone marrow macrophages (BMMs). Exposure to VPA significantly repressed the production of interleukin 12 (IL-12), and tumor necrosis factor α by lipopolysaccharide (LPS)-induced macrophage activation, in contrast, promoted IL-10 expression. VPA also affected the costimulatory molecule expression on LPS-stimulated RAW264.7 and BMMs (downregulation of CD40 and CD80, and upregulation of CD86). Specifically, VPA inhibited macrophage-mediated T helper 1 (Th1) effector but enhanced Th2 effector cell activation. Together, our preclinical study demonstrates that VPA significantly affects the phenotype and function of macrophage, indicating an important role of HDAC activity in immune regulation and inflammation. It also provides a rationale to evaluate VPA activity for the treatment of macrophage dysfunction-associated diseases.
Keywords: sodium valproate, macrophage subsets, autoimmune diseases
Source: https://pubmed.ncbi.nlm.nih.gov/22054065/
Archive: https://archive.is/gIsdI